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Abstract. We give a theoretical treatment of magnetic dipole absorption of electromagnetic
radiation in small conducting particles, at photon energies which are large compared to the
single-particle level spacing, and small compared to the plasma frequency. We discuss both
diffusive and ballistic electron dynamics for particles of arbitrary shape.

The conductivity becomes non-local when the frequency is smaller than the frequencyωc

characterizing the transit of electrons from one side of the particle to the other, but in the
diffusive caseωc plays no role in determining the absorption coefficient. In the ballistic case,
the absorption coefficient is proportional toω2 for ω � ωc, but is a decreasing function ofω
for ω � ωc.

1. Introduction

The interaction of electromagnetic radiation with small conducting particles has attracted
much interest, both from experimental and theoretical perspectives. Historically, exp-
erimental work in this field has been frustrated by the difficulties associated with obtain-
ing uniform and precisely characterized metal grains by techniques such as abrasion or
precipitation. References [1–3] are general reviews of this field. Recently there has
been a revival of interest in this topic, caused by new developments in both experimental
techniques and theoretical perspectives. The problems of controlling the size, composition,
and microscopic structure of the particles can be overcome using lithographic technologies
from the field of mesoscopic physics, reviewed in [4]. Theoretical interest in this problem
has been stimulated by wishing to understand the response of ‘generic’, ‘chaotic’ quantum
systems to perturbations, by extending the random-matrix models for spectra: this approach
was initiated in a seminal paper by Gorkov and Eliashberg [5], and more recent work on
applications of random-matrix methods is reviewed in [4].

For sufficiently low frequencyω, classical electromagnetic theory suggests that the
absorption scales asω2, and therefore dominates scattering, which scales asω4. The classical
theory of the interaction of electromagnetic radiation with spherical particles of uniform
composition was considered by Mie [6]; the theory encompasses conducting particles with

§ Permanent address: Department of Physics and Applied Physics, John Anderson Building, University of
Strathclyde, Glasgow G4 0NG, UK.
‖ Permanent address: Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzer Strasse 38, 01187 Dresden,
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a complex dielectric constant, which is often modelled by the Drude theory [7]. If the
particles are small compared to both the wavelength and the electromagnetic skin depth
of the radiation, the dominant contributions to the absorption are called the electric and
magnetic dipole terms [8]. In both cases the absorption is due to Joule or Ohmic heating
caused by electrical currents flowing through the particle: the electric dipole term is due to
currents which establish electrical polarization of the particle, and the magnetic dipole term
is due to eddy currents induced by variation of the magnetic field.

At frequencies below the plasma frequency, the electric field is screened from the
interior of the particle, but the magnetic field can penetrate the whole of the particle.
Although magnetic effects are negligible in atomic absorption processes, they could become
significant when the number of atoms in the particle is sufficiently large that most of the
atoms are screened from the electric field. In fact, magnetic dipole absorption is often the
dominant absorption process in suspensions of small metal particles [9]. Very few of the
many theoretical papers on absorption of radiation by small particles have considered the
magnetic dipole contribution; some exceptions are [1, 10] which consider magnetic dipole
absorption in the context of effective-medium theories. Because it is typically the dominant
contribution, it is appropriate to consider the problem of magnetic dipole absorption in some
detail.

The Mie theory is restricted to spherical particles in which the dynamics of the charge
carriers is diffusive, and quantum mechanical effects are ignored. In this paper we will give
the first theoretical treatment of magnetic dipole absorption going beyond the Mie theory.
The conducting particle is modelled as a container or arbitrary shape, which confines a
gas of non-interacting fermions (which we term electrons): this is the standard model
for metallic systems with high densities of charge carriers. The motion of the electrons
within the boundary of the container may be either free, which we refer to as the ballistic
case, or it may be impeded by elastic scatterers, which result in the electron trajectories
within the particle being diffusive: these model the limiting cases of very pure and very
disordered conductors. Our approach allows for arbitrary particle geometries, and we give
careful consideration to the fact that the conductivity is non-local when the particles are
very small: quantum mechanical effects are included using a semiclassical approach. The
paper complements [11–13], which gave a comparably comprehensive treatment of electric
dipole absorption.

We do not explicitly consider the structures in the absorption close to the single-particle
level spacing which were originally considered by Gorkov and Eliashberg [5]. These
structures are determined by repulsion between energy levels and the appropriate tool to
analyse them is random-matrix theory. Their full characterization requires an estimate of a
mean square matrix element, which was not given correctly in [5]. Our results for the low-
frequency limit provide the correct estimate of this quantity for magnetic dipole absorption.

Sections 2 to 4 will be concerned with various aspects of the formulation of the problem,
discussing respectively the relation between the absorption of radiation and correlation
functions of the electron motion, the criteria for a self-consistent solution of the equations
determining the electric field driving the eddy currents, and the definition and semiclassical
estimation of the non-local conductivity which is required to determine the self-consistent
field. Our semiclassical estimates for the non-local conductivity are closely related to
expressions given by Argaman [14]. In section 5 we develop the theory for magnetic dipole
absorption in particles with diffusive electron motion, assuming that the electric field is
known. This calculation also yields the form of the non-local conductivity applicable to the
diffusive case: in section 6 we consider the solution for the self-consistent field, and discuss
results for some specific geometries. Our formula for the non-local conductivity is identical
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to one given by Serota and co-workers [15, 16], who used diagrammatic techniques. Our
derivation is more direct and requires fewer assumptions: we discuss this point further in
section 6.

Our approach uses a semiclassical estimate described in [17], which relates mean squared
matrix elements to classical correlation functions. We might expect that there should be
features in the absorption spectrum which are related to the characteristic timescale for
decay of classical correlations, in this case the typical time for a particle to cross the
particle; the importance of this timescale was emphasized by Thouless [18], and in the case
of diffusive electron motion, we will refer to the characteristic frequency scaleωc = D/a2

as the Thouless frequency (D is the diffusion constant anda is the characteristic size of
the particle). Another reason for expectingωc to play a role in determining the absorption
coefficient is that the conductivity is non-local whenω is not large compared toωc. We
find however thatωc plays no role in the final expression for the absorption coefficient.

We consider the case of ballistic electron motion in section 7. We are only able to gain
limited information about this case: we find that the absorption coefficient is proportional
to ω2 at frequencies small compared toωc = vF/a, and that it is a decreasing function of
frequency forω � ωc.

Our conclusions are in many ways parallel to those for electric dipole absorption. In
ballistic systems, it was found [11, 12] that the electric dipole absorption has resonances in
the absorption coefficient with a frequency scaleωc = a/vF, wherevF is the velocity at the
Fermi energy. By contrast, in the case of diffusive electron motion, it was found [13] that
there is no structure in the absorption coefficient at the frequency scaleωc = D/a2.

Finally, we remark that there is a large literature concerned with the effects of time-
dependent magnetic fluxes on metallic loops: when the magnetic flux varies sinusoidally,
the absorption of energy by the loop is a special case of the magnetic dipole absorption
which we consider here. Most of the papers on this topic are concerned with quantum-size
effects analogous to those considered by Gorkov and Eliashberg [5]; two recent studies in
this area are [16] and [19, 20].

2. Formulation of the problem

The absorption of radiation is usually described by an extinction coefficientγ (ω), which
is defined as the fractional loss of intensity per unit length of sample, divided by the
volume fractionF occupied by the particles. We will express our results in terms of the
rate of absorption of energy〈dE/dt〉 within a single particle. If the amplitudes of the
electric and magnetic fields areE0 are B0 respectively, the intensity of the radiation is
I = 1

2ε0E
2
0 = B2

0/2µ0, and the relationship betweenγ and〈dE/dt〉 is therefore

γ = 2

V ε0cE
2
0

〈
dE

dt

〉
(2.1)

whereV is the volume of a single particle. In this paper we will define the absorption
coefficientα(ω) as the rate of absorption of energy for a single particle, divided by the
electric field intensity:

α(ω) = 1

E2
0

〈
dE

dt

〉
= 1

c2B2
0

〈
dE

dt

〉
. (2.2)

The normalization with respect to electric (rather than magnetic) field intensity is used to
facilitate comparison with the results in [11–13].
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The particle will be considered to consist of a static potential well which traps a gas
of non-interacting fermions (electrons), initially with occupation probabilityf (E) (which
would be identified with the Fermi–Dirac distribution). In a quantum mechanical calculation
the rate of absorption of energy is determined by the Fermi golden rule. This states that the
rate of transition under the action of a periodic perturbation with frequencyω and matrix
elements1Hnm, from a state with energyEn, to a quasi-continuum of final states with
energies close toEm = En + h̄ω is

R = π

2h̄
g(Em)〈|1Hnm|2〉ω (2.3)

whereg(Em) is the density of final states and〈|1Hnm|2〉ω is the mean square matrix element
for transitions fromEn to states close toEm. The energy absorbed by an electron making
an upward transition is ¯hω. The rate of absorption of energy is therefore〈

dE

dt

〉
= h̄ω

∫
dE g(E)R(E)[f (E)− f (E − h̄ω)] ∼ Rgh̄2ω2 (2.4)

where the approximate equality is applicable in the limit where ¯hω andkT are both large
compared to the mean level spacing, but small compared to other energy scales: in the
right-hand expression bothg andR are evaluated at the Fermi energy.

The mean square matrix element can be estimated semiclassically [14]:

〈|1Hnm|2〉ω = 1

2πh̄g

∫ ∞
−∞

dt exp(iωt)〈1H(t)1H(0)〉E (2.5)

where 〈1H(t)1H(0)〉E is the microcanonical autocorrelation function of the classical
observable corresponding to1Ĥ , evaluated at energyE. Combining this result with (2.4),
the absorption coefficient can be expressed in terms of the classical autocorrelation function
of the perturbation1H(r,p). The resulting expression can also be written in terms of the
classical change in energy of the individual electrons due to the perturbation: the change
in energy of an electron following a trajectoryr(t),p(t) is

1E(t) =
∫ t

0
dt ′

∂H

∂t ′
(r(t ′),p(t ′)). (2.6)

Combining this result with (2.5), the rate of absorption of energy by the electron gas is〈
dE

dt

〉
= g

2

d

dt

〈
1E(t)2

〉
(2.7)

where〈1E(t)2〉 is the variance of the change in the single-electron energies.
In our problem the perturbation is a sinusoidally varying electromagnetic field, specified

by a vector potentialA(r) exp(iωt), and a scalar potential8(r) exp(iωt). The component
of the perturbation of the Hamiltonian which is quadratic inA can be neglected when
calculating the leading-order absorption coefficient; the remaining terms are

1Ĥ = e

2me
( p̂ ·A+A · p̂)+ e8. (2.8)

In discussing the magnetic dipole absorption, it is given that the magnetic field is

B(t) =∇×A = B0 exp[iωt ]. (2.9)

The fluctuating magnetic field induces an electric fieldE, which is given by

E = −∂A
∂t
+∇8. (2.10)



Magnetic dipole absorption of radiation 2743

The Hamiltonian admits a set of gauge transformations(A,8) → (A′,8′) = (A,8) +
(∇µ, ∂tµ) which leave the electric and magnetic fields unchanged. We will assume that
the gauge has been chosen so that8 = 0. Physically, the electric field is not uniquely
defined by the magnetic field, and must be determined by a self-consistent condition, which
we discuss in section 3.

3. Self-consistent choice of the vector potential

3.1. Self-consistent electric field

The eddy currents induced by the fluctuating magnetic will themselves generate a magnetic
field. We will consider only the case of very small particles, for which this additional
magnetic field is negligible: this applies when the dimensions of the particle are small
compared to the electromagnetic skin depth. This assumption is compatible with the use
of semiclassical approximations, which require that the particle be large compared to the
Fermi wavelength. We therefore assume that the magnetic field is simply the externally
applied field,B(t) = B0 exp[iωt ]e3. The electric field is required to uniquely determine
the perturbation of the Hamiltonian. In this section we will discuss the self-consistent
calculation of the electric field.

In discussions of the Zeeman effect in atomic physics, the perturbation of the Hamil-
tonian representing the magnetic field is conventionally taken to be proportional to the
component of the angular momentum operator along the direction of the field. It is natural
to ask why a more involved procedure is used here, but is unnecessary for the Zeeman
problem or for calculation of static magnetic susceptibility. At the end of this section we
show that the angular momentum operator gives the correct answer in the limit where the
frequency approaches zero, but not in general.

The electric field satisfies the Maxwell equations

∇×E = ∂B

∂t
∇ ·E = ρ

ε0
. (3.1)

The electric field causes a current densityj to flow within the particle. We will assume that
a linear response theory is valid, but in general the current may be a non-local function of
the electric field: we will write

j(r, t) =
∫

dr′
∫ t

−∞
dt ′ σ̃ (r, r′; t − t ′)E(r′, t ′) (3.2)

whereσ̃ is the non-local conductance tensor. We will also write this relation in the form

j(r, ω) =
∫

dr′ σ̃ (r, r′;ω)E(r′, ω) ≡ σ̂E(r, ω) (3.3)

where the second equality defines an operatorσ̂ which maps the electric fieldE(r, ω) non-
locally into the current fieldj(r, ω). For a monochromatic perturbation, the charge density
is

ρ = − i

ω
∇ · j. (3.4)

Combining these results, we find the following equation for the electric field:

∇ · j ′ = 0 j ′ = (σ̂ − iωε0)E. (3.5)

This equation must be supplemented by a boundary condition in order to uniquely determine
the electric field. This is

n̂ · j = 0 (3.6)
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where n̂ is a unit vector normal to the boundary: this condition represents the fact that
charges cannot enter or leave the sample.

3.2. Representation of the field in terms of potentials

It will be convenient to write the electric field in terms of a vector and a scalar potential:

E =∇×ψ +∇φ. (3.7)

We will only consider in detail cases where the fieldψ(r) is of the form

ψ = ψ(x, y)e3. (3.8)

This form is appropriate when the conducting particle is two dimensional, lying in the plane
z = 0, for three-dimensional particles in the form of general cylinders aligned with thez-
axis, and can be extended to spheres and some other non-cylindrical geometries. Substituting
(3.7), (3.8) into the Maxwell equations, we find thatψ satisfies Poisson’s equation in the
form

∇2ψ = iωB0. (3.9)

We will always chooseψ(x, y) to satisfy the condition thatψ = 0 on the boundary.
Having uniquely specifiedψ(x, y), equations (3.5) and (3.6) are transformed into equations
determining the scalar potentialφ.

In some cases a local, isotropic conductivity6(ω) will provide an adequate description.
In this case, the condition (3.5) reduces to the requirement that∇ ·E = 0, in which case
the electric field can be written in the form

E =∇×ψ +∇φ ∇2φ = 0. (3.10)

The boundary condition corresponding to (3.6) is then satisfied by taking a solution for which
ψ = 0 andφ = 0 on the boundary: the latter condition implies thatφ = 0 everywhere.

3.3. A remark on the low-frequency limit

After having described the approach used to define the correct perturbation, we will now
show that any form of the electric field which has a uniform value of∇ × E gives the
correct value of the absorption coefficient in the limitω → 0. According to (2.7), the
absorption coefficient is proportional to the variance of the change in the single-particle
energy. The change of the single-particle energy can be written as

1E(t) =
∫ t

t0

dt ′
∂H

∂t ′
(r(t ′),p(t ′)) = iω

∫ t

t0

dt ′
dr

dt ′
·A(r(t ′)) exp[iωt ′]. (3.11)

Consider the effect of making a transformationA → A′ = A +∇ϕ on the absorption
coefficient. The change in the single-particle energy is transformed to1E′:

1E′ = 1E + iω
∫ t

t0

dt ′ exp[iωt ′]
dr

dt ′
· ∇ϕ

= 1E + iω
∫ t

t0

dϕ[r(t ′)] exp[iωt ′] ≡ 1E + iωX(t, ω). (3.12)

If ω = 0, the correctionX(t) introduced by the transformation is simply

X(t, 0) =
∫ t

t0

dt ′
dr

dt
· ∇ϕ = ϕ[r(t)] − ϕ[r(t0)] (3.13)
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which remains bounded ast →∞. For finiteω the correctionX(t, ω) satisfies

〈X2(t, ω)〉 = t
∫ ∞
−∞

dτ exp(iωτ)

〈
dϕ

dt
(τ )

dϕ

dt
(0)

〉
+O(1) ≡ 0(ω)t +O(1) (3.14)

provided that the correlation function of dϕ/dt decays faster thanτ−1. Comparison with
(3.13) shows that the coefficient0(ω) of the secular term approaches zero asω → 0,
implying that the gauge-dependent contribution to the absorption coefficient vanishes in the
limit ω→ 0.

4. Semiclassical theory for non-local conductivity

4.1. General formula

We will use a semiclassical analysis for the non-local conductivityσ̃ (r, r′, ω). We will first
consider the problem in rather abstract terms: we will discuss a HamiltonianH(r,p, X),
whereX is a time-dependent parameter. The Hamiltonian determines the motion of particles
in a gas with phase-space densityρ(r,p, t). The phase-space density satisfies the Liouville
equation∂tρ = {ρ,H }. A solution can be written in the form

ρ(r,p; t) = f (H(r,p;X)− EF)

− Ẋ
∫ t

−∞
dt ′

∂H

∂X
(r(t ′),p(t ′);X) ∂f

∂E
(H(r,p;X)− EF)+O(Ẋ2). (4.1)

Formally, this is an expansion in the velocity of the perturbation,Ẋ: the results will be
valid for all frequencies, because the amplitude of the perturbation is infinitesimal.

The leading-order Weyl or Thomas–Fermi estimate of the density of states of a quantum
system states that the density of quantum states is(2πh̄)−d in classically accessible regions
of phase space. We will therefore multiply the above solution by this factor, and takef (E)

to be the Fermi–Dirac function.
Our Hamiltonian,H = (p − eA)2/2me+ V has a time-dependent vector potential, so

we can write

Ẋ
∂H

∂X
= ∂H

∂A
·E = e

me
p ·E. (4.2)

The resulting current is

j(r, t) = e

me

∫
dp pρ(r,p, t). (4.3)

The current flowing in response to the electric fieldE(r, t) is therefore

ji(r, t) = e2

(2πh̄)dm2
e

∑
j

∫ t

−∞
dt ′

∫
dp pi

∂f

∂E
Pj (r,p; t ′ − t)Ej (R(r,p; t ′ − t))

= e2

(2πh̄)dm2
e

∑
j

∫ t

−∞
dt ′
∫

dp
∫

dr′
∂f

∂E
pi

× Pj (r,p; t ′ − t)δ[r′ −R(r,p; t − t ′)]Ej(r′, t ′) (4.4)

wherePi(r,p; τ), Ri(r,p, τ ) are theith components of the momentum and position at time
τ for a trajectory which starts at(r,p) at time t = 0. The components of the non-local
conductivity tensor are therefore

σij (r, r
′; t) = e2

(2πh̄)dm2
e

θ(t)

∫
dp

∂f

∂E
piPj (r,p, t)δ[r

′ −R(r,p; t)]. (4.5)
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Here θ(t) is a step function:θ(t) = 1 for t > 0 and zero otherwise. We can write this
result in a simpler form:

σij (r, r
′, t) = e2

(2πh̄)dm2
e

θ(t)
〈
pi(r, 0)pj (r

′, t)
〉

(4.6)

where〈· · ·〉 denotes an average over the initial momenta, defined by (4.5). We will consider
the evaluation of this quantity for diffusive motion in section 6; next we consider the case
of ballistic motion.

4.2. Results specific to ballistic systems

Equation (4.5) can also be expressed as a sum over classical trajectories which travel between
r andr′:

σij (r, r
′; t) = e2

(2πh̄)dm2
e

θ(t)
∑
paths

[
det

(
∂Rk

∂pl

)]−1

(pinit)j (pfin)i . (4.7)

In the low-temperature limit the term∂f/∂E reduces to a delta function, and this expression
becomes a sum of delta functionsδ(t − τj ), where theτj are the times of trajectories from
r to r′ at the Fermi energyEF.

(k)
i

n(k)
j’

n
��
��
��
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Figure 1. Illustrating the images used in discussing expression (4.11) for a square billiard. The
sum over all paths fromr to r′ can be represented as a sum over straight linesk of lengthLk
connectingr with the image points ofr′.

It is more convenient to consider the frequency-dependent non-local conductivity: if
the electric field isE(r) exp(iωt), then the current can be written in the form

ji(r, t) = exp(iωt)
∑
j

∫
dr′ σij (r, r′;ω)Ej (r′). (4.8)

Comparing with (4.4) and (4.5), we find

σij (r, r
′;ω) =

∫ ∞
0

dτ exp(iωτ)σij (r, r
′; τ)

= e2

(2πh̄)2m2
e

∑
paths

∫ ∞
0

dτ exp(iωτ)
∫

dθ pi(θ)p
′
j (θ)δ(r

′ −R(r,p; τ)) (4.9)
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where in the second line we have specialized to the case of two dimensions, andθ is the
initial angle of the trajectory. Performing the integrations, we find

σij (r, r
′;ω) = e2

(2πh̄)2m2
e

∑
paths

[
det

(
∂2R

∂τ ∂θ

)]−1

pi(θ)p
′
j (θ) exp(iωτk) (4.10)

where the sum runs over all trajectories which travel fromr to r′ in time τk > 0 at the
Fermi energy. This general expression can be specialized in a variety of ways. We remark
that it has a rather simple form for billiards with boundaries consisting of only straight
edges. In this case the timesτk are proportional to the lengthsLk of the trajectories, and
because there is no focusing or de-focusing of bundles of trajectories when they bounce off
the boundary, the form of the determinant is very simple: we find

σij (r, r
′;ω) = e2pF

(2πh̄)2
∑
k

L−1
k n

(k)
i n

(k)
j ′ exp(iωLkme/pF) (4.11)

whereni , n′j are the components of a unit vector in respectively the initial and final directions
of the trajectory. As an example, the case of a square billiard is illustrated in figure 1. The
formula also gives the non-local conductivity in free space, with only the direct trajectory
included.

We close this section by remarking that in the limitω→∞ the non-local conductivity
becomes a very rapidly varying function ofr′, except for when the path length of the
trajectory is very short. Unless the electric field is a rapidly varying function of position,
the dominant contribution to (4.4) comes from the region wherer′ is close tor, implying
that a local conductivity6ij (r, ω) will give an adequate description. Whenr′ is close to
r, the non-local conductivity can be approximated by (4.11), with only the direct trajectory
included. The local conductivity is then obtained as follows:

6ij (ω) = e2pF

(2πh̄)2

∫
dR

1

R
exp(iωmeR/pF)nin

′
j =

ie2p2
F

2πh̄2meω
δij = iNe2

meω
δij (4.12)

whereN is the electron density per unit area. This result is precisely the same as the
high-frequency limit of the Drude formula for the conductivity.

5. The absorption coefficient for diffusive electrons

5.1. Preliminary comments

In the present section we calculate the absorption coefficientα(ω) for systems with diffusive
electron motion, using (2.6) and (2.7), assuming that the self-consistent electric field
is known. We show that the absorption coefficient can be written as a sum of two
terms. The first term describes a classical bulk contribution. The second term introduces
boundary contributions which could modify the absorption coefficient at frequencies below
ωc = D/a2.

We begin by briefly discussing the classical expression for the absorption coefficient:
it is natural to compare the final answer with this result. The rate of absorption of energy
is given by integrating the rate of Joule heatingj ·E over the volume of the particle. The
current densityj is proportional to the local electric field:j = 60E = iω60A where60

is the bulk conductivity of the metal. We therefore have

α(ω) = 1

260E
2
0

∫
dr |j|2 = 60ω

2

2E2
0

∫
dr A2 = ne2Dω2

2c2B2
0

∫
dr A2 (5.1)



2748 M Wilkinson et al

where n is the density of states per unit volume,n = dN/dE = g/V . The boundary
condition for the electric field is determined by the fact that the current must be tangential
to the boundary. Unless there is a constant biasing magnetic field present,E is aligned
with j. This implies thatE · n̂ = 0 at all points on the boundary (wheren̂ is a unit vector
normal to the boundary).

Equation (2.5) suggests that the absorption coefficient might exhibit deviations from
classical behaviour at frequencies small compared to the Thouless frequencyωc = a2/D,
which is the inverse of the time taken for an electron to diffuse across the sample. In the
following, we give a semiclassical treatment of the absorption coefficient with diffusive
electron motion. There are two distinct but related issues which must be addressed here.
Firstly, for a given electric fieldE(r), does the absorption coefficient exhibit any structures
at the Thouless energy? Secondly, is the self-consistent solution for the electric field
different above and below the Thouless frequency? In this section we consider the first
of these issues. In section 6 we will show how one of the results below can be used to
determine the non-local conductance, and consider the determination of the self-consistent
field in greater detail.

5.2. Calculation of the energy absorbed

Our calculation is based upon (2.6) and (2.7). Because the instantaneous velocity is not
well defined for a diffusive trajectory, we will divide the trajectory of the electron into finite
segments, in which the electron travels fromrn to rn+1 with a uniform velocity, in a fixed
time incrementδt . Thern are chosen from an ensemble of random walks confined within
the boundary of the particle. The change in the single-electron energy is

1E(t) = Re

[
ieω

∫ t

0
dt ′ exp(iωt)A(r) · dr

dt ′

]
= Re

[
ieω

N−1∑
n=0

exp(iωtn)Ā(rn) · δrn
]

(5.2)

where t = N δt , tn = (n + 1
2) δt , δrn = rn+1 − rn, and the quantityĀ is defined by

the requirement that each term in the sum equals the contribution to the integral from the
corresponding link in the random walk. For diffusive motion with fixed diffusion constant,
we must take〈δr2〉 ∼ δt , so the error in each step must be O(δr3) to achieve a convergent
estimate of the integral. The sum (5.2) can be approximated as follows:

1E(t) = Re

[
ieω

N−1∑
n=0

exp(iωtn)A[ 1
2(rn + rn+1)] · (rn+1− rn)

]
+O(N δr3) (5.3)

and the error term vanishes in the limitδt → 0. We remark that equation (5.2) is a stochastic
integral, and evaluation of the integrand of the mid-point of the step is equivalent to using
the Stratonovich definition of the integral [21]. The variance of (5.3) is

〈1E(t)2〉 = e2ω2
N−1∑
i,j=0

exp[iω(ti − tj )]〈A[ 1
2(ri + ri+1)] · δri

× A[ 1
2(rj + rj+1)] · δrj 〉 +O(δt)

∼ e2ω2N
∞∑

n=−∞
exp(iωtn)Cn (5.4)

where

Cn = 〈A[ 1
2(r0+ r1)] · δr0A[ 1

2(rn + rn+1)] · δrn〉. (5.5)
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The absorption coefficient is therefore proportional to the Fourier transform of a correl-
ation functionC(t):

α(ω) = ge2ω2

2δt B2
0

∞∑
n=−∞

exp(iωtn)Cn ≡ ge2ω2

2B2
0

∫ ∞
−∞

dt exp(iωt)C(t) (5.6)

whereC(n δt) ≡ Cn/(δt)2. The correlation function in (5.5) is an average over diffusing
trajectories of the electrons; it can be expressed in terms of the propagatorP(r, r′; t) which
gives the probability density for reachingr′ from initial positionr at timet : for times large
compared toδt this satisfies the diffusion equation [∂t − D∇2

r ]P = 0. The correlation
function (5.5) involves trajectories which visit four different positions,r0 = r − 1

2 δr,
r1 = r + 1

2 δr, rn = r′ − 1
2 δr

′ andrn+1 = r′ + 1
2 δr

′, at times 0,δt , t − δt and t : three
propagators are required to give the probability of for a path visiting these four positions,
and the average runs over all four positions. Assuming summation over repeated indices,
the correlation function is

C(t) = 1

V δt2

∫
dr
∫

dr′
∫

dδr
∫

dδr′ Ai(r + 1
2δr)Aj (r

′ + 1
2δr
′) δri δr ′j

× P(r + δr, r′; t − δt)P(r, r + δr; δt)P(r′, r′ + δr′; δt). (5.7)

We discuss the casest = 0 andt 6= 0 separately. Att = 0, we haveδr = δr′, and the
correlation function is easily evaluated, giving a result which is O(δt):

C0 = 〈(A · δr)2〉 = 2D δt

V

∫
dr A(r)2. (5.8)

Here we have used〈(A · δr)2〉 ∼ 1
2〈A2〉〈δr2〉 = D δt 〈A2〉. This result implies that there

is a contribution toC(t) of the form(D/V ) δ(t).

Figure 2. Illustrating the vectors and coordinate system used in the discussion of the construction
of the short-time propagator.

The caset 6= 0 requires a more delicate treatment. We can expand (5.7) in both the short
time intervalδt and in the short stepδr. It will turn out that the leading-order contribution
is O(δt2), as opposed to the case fort = 0. Because the motion is diffusive, we have
δr2 ∼ δt , so terms up to quartic inδr must be retained:

C(t) ∼ 1

V δt

∫
dr
∫

dr′
∫

dδr
∫

dδr′ [Ai + 1
2 ∂rkAi δrk + 1

8 ∂
2
rkrl
Ai δrk δrl ]

× [A′j + 1
2 ∂r

′
k
A′j δr

′
k + 1

8 ∂
2
r ′kr
′
l
A′j δr

′
k δr
′
l ] δri δr

′
j

× [P(r, r′; t)− ∂tP(r, r′; t) δt + ∂rkP(r, r′; t) δrk
+ 1

2 ∂
2
rkrl
P(r, r′; t) δrk δrl ]P(r, r + δr; δt)P(r′, r′ + δr′; δt). (5.9)
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The terms containing∂tP(r, r′; t) can be dropped when there are more than two factors of
δr. The integrals over products of theδr can now be separated out to give

C(t) = 1

V δt2

∫
dr
∫

dr′
{
AiAj [P − ∂tP δt ]〈δri〉〈δr ′j 〉

+ [ 1
2A
′
j ∂rkAi P + 1

2A
′
j ∂rk (PAi)− 1

2A
′
j ∂rkAi P]〈δri δrk〉〈δr ′j 〉

+ [ 1
2Ai ∂rkA

′
j P]〈δr ′j δr ′k〉〈δri〉

+ [ 1
8Ai ∂

2
rkrl
A′j P + 1

2AiA
′
j ∂

2
rkrl
P]〈δri δrk δrl〉〈δr ′j 〉

+ [ 1
2Ai ∂

2
rkrl
A′j P]〈δr ′j δr ′k δr ′l 〉〈δri〉

+ [ 1
4 ∂rlAj ∂rkAi P + 1

2Ai ∂rlAj ∂rkP]〈δri δrk〉〈δr ′l δr ′j 〉
}

(5.10)

where〈δr〉 = ∫ dδr δrP(r,r+ δr; δt). Now consider the form of these integrals whenδt
is sufficiently small. The propagatorP(r, r+δr; δt) is small unlessδr is small. Whenr is
not close to the boundary, this propagator can be approximated by a function of the distance
travelled,P0(|δr|, δt): because the steps are assumed to be independent, the variance〈δr2〉
averaged over this distribution can be identified with 2dD δt (whered is the dimensionality
of space). Whenr is close to the boundary, a solution satisfying the boundary condition
n · ∇P = 0 is constructed by the method of images. We denote the image of the source
point r by r∗. The diffusion propagator is then

P(r, r + δr; δt) ∼ P0(|δr|, δt)+ P0(|δr + r − r∗|, δt). (5.11)

Sinceδt is small compared to the time taken to traverse the particle, the second term only
contributes for pointsr close to the surface, which can thus be considered locally flat. We
then introduce a local coordinate system arranged so that the nearest boundary point defines
the origin. In two dimensions, the surface tangent is given by the linex = 0, and the
normal byy = 0. The pointr lies at(x, 0), andr∗ = (−x, 0) (figure 2).

The average〈δri〉 vanishes unlessr is close to the boundary, in which case the mean
displacement is inwards, and its projection in the direction perpendicular to the surface is

〈δx〉x =
∫ ∞

0
dx ′ (x ′ − x)[f (x ′ − x)+ f (x ′ + x)] (5.12)

wheref (x) is the projection of the distributionP0(|δr|) onto thex-axis:

f (x) =
∫

dr P0(|δr|, δt)δ(x − δrx) (5.13)

whereδrx is thex-component ofδr; this satisfies∫ ∞
−∞

dx x2f (x) = 2D δt. (5.14)

Equations (5.12) and (5.14) show that the mean inward displacement〈δx〉x is of typical
magnitude

√
D δt , in a layer of depth

√
D δt next to the boundary, and negligible elsewhere.

The weightw of these inward displacements is clearly∼D δt . We define

w ≡ lim
L→∞

∫ L

0
dx 〈δx〉x. (5.15)

We evaluatew by substituting (5.12), then making a change of variablesX = x ′ + x,
X′ = x ′ − x. The integral is written as the sum of two integrals, one over the domain
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X 6 L, |X′| 6 X, which vanishes because of a symmetry, and another integral which
involves onlyf (X′) in the limit L→∞: we findw = D δt , which implies that∫

dr Fi(r)〈δri〉 = −D δt
∫

dsi Fi (5.16)

for any vector fieldF , where dsi are the components of a vector element of the surface.
When evaluating the integrals over〈δri δrj 〉 we can approximate these terms by 2D δt δij ,
because the second term in (5.12) is significant only in a narrow layer of width

√
D δt .

The terms containing averages ofδr3 make no contribution at orderδt2. Retaining only the
leading-order terms, we find the following contribution fort 6= 0:

C(t) = D2

V

∫
dr
∫

dr′ ∂riAi(r) ∂r ′j Aj (r
′)P(r, r′; t)

− 2
D2

V

∫
dsi

∫
dr′ Ai(r) ∂r ′j Aj (r

′)P(r, r′; t)

+ D2

V

∫
dsi

∫
ds ′j Ai(s)Aj (s

′)P(s, s′; t). (5.17)

After integrating by parts, and adding the delta-function contribution fromt = 0, we find

C(t) = D δ(t)
∫

dr AiAi − D
2

V

∫
dr
∫

dr′ AiAj ∂2
ri r
′
j
P(r, r′; t). (5.18)

Before Fourier transforming this expression to determine the absorption coefficient, we will
introduce a convenient expression for the propagator:

P(r, r′; t) = θ(t)
∑
α

χα(r)χα(r
′) exp(−Dk2

αt) (5.19)

where theχα(r) are solutions of the Helmholtz equation [1 + k2
α]χα = 0, satisfying

the Neumann boundary conditionni ∂ri χα = 0. Using this result, we find the following
expression for the absorption coefficient:

α(ω) = Kω2

[∫
dr A2−

∑
α

D2k2
α

(Dk2
α)

2+ ω2

∣∣∣∣ ∫ dr Ai ∂ri χα

∣∣∣∣2] (5.20)

where

K = ge2D

B2
0

= 60

B2
0

. (5.21)

Equation (5.20) is the main result of this section. As pointed out above, it consists of two
terms. The first term is just the classical result derived at the beginning of this section. The
second term is written as a sum over eigenmodes of the diffusion propagator. It incorporates
boundary effects, as will be seen in the next section.

5.3. The low-frequency limit

We conclude this section with two remarks concerning the low-frequency limit. First, we
show that the result (5.20) fulfils a condition discussed at the end of section 3, where we
noted that the low-frequency limit of the absorption coefficient must be invariant under
adding any gradient to the vector potential. To see this, consider the effect of the following
transformation:

Ai → Ai + ∂ri ϕ. (5.22)
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In the limit ω→ 0 the absorption coefficient is determined by the integral of the correlation
function. The addition of the term∂ri ϕ produces two new terms in the delta function
contribution in (5.18), one an integral containingAi ∂ri ϕ, the other containing∂ri ϕ ∂ri ϕ.
Corresponding additional terms appear in the double space integral in (5.18). Consider the
first of these terms, linear in∂ri ϕ. In order for these terms to make no contribution to the
absorption coefficient, it is sufficient to show that the following two integrals are equal:

I = D
∫ ∞
−∞

dt
∫

dr
∫

dr′ Ai ∂rj ϕ ∂
2
ri ,r
′
j
P (5.23)

I ′ = 2
∫

dr Ai ∂ri ϕ. (5.24)

We will use the result

δ(r − r′) =
∑
α

χα(r)χα(r
′). (5.25)

Using (5.20), we find

I = 2
∑
α

1

k2
α

∫
dr
∫

dr′ Ai ∂rj ϕ ∂ri χα(r) ∂rj χα(r
′)

= 2
∫

dr
∫

dr′ Aiϕ(r′) ∂ri χα(r) χα(r
′)

= 2
∫

dr
∫

dr′ Aiϕ(r′) ∂r ′i δ(r − r′) = I ′. (5.26)

This shows that terms involvingAi ∂ri ϕ cancel and do not contribute to the absorption in
the limit ω → 0. Since this result applies for any vector fieldAi , we can replaceAi by
∂ri ϕ and deduce immediately that the terms quadratic in∂ri ϕ also cancel.

Second, we comment on the form of the absorption coefficient in the limitsω � ωc and
ω � ωc. The vector potential can always be written as a sum of the curl of a divergenceless
field, and a gradient:

iωA = a+∇ϕ =∇×ψ +∇ϕ ∇ ·ψ = 0 (5.27)

with the fielda chosen so that it is tangential to the boundary (n̂ · a = 0). In the case
ω � ωc, the absorption coefficient is determined by the delta-function contribution, and we
have

lim
ω/ωc→∞

α(ω) = Kω2
∫

dr
(
a2+∇ϕ2

)
(5.28)

with K given by (5.21). In the caseω � ωc, on the other hand, the calculation that
we described above shows that the potentialϕ makes no contribution to the absorption
coefficient, and that

lim
ω/ωc→0

α(ω) = Kω2
∫

dr a2. (5.29)

We showed in section 3 that if the vector potential is written in the form (5.27), then
the potentialϕ is zero when the conductivity is isotropic and local. Inspection of (5.20)
shows that the boundary contribution to the correlation function vanishes whenϕ vanishes.
In more general cases, comparison of (5.28) and (5.29) shows that if the electric field is
independent of frequency, the absorption coefficient is reduced, relative to its classical value,
at frequencies below the Thouless frequencyωc.
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6. Self-consistent electric field: the diffusive case

6.1. Non-local conductance

We can deduce the non-local conductivity from the results of the previous section in two
ways. We could use (4.6) as the definition of the conductivity, and evaluate it by setting
A(r) = δ(r −R)ei in (5.5), so that

σij (R,R
′; t) = e2

(2πh̄)dδt2
θ(t)〈δ(R− r) δri δ(R′ − r′) δr ′j 〉. (6.1)

Alternatively, if we write the absorption coefficient in terms of the non-local conductivity
in the form

α(ω) = 1

2E2
0

∫
dr
∫

dr′
∫

dτ exp(iωτ)σij (r, r
′, τ )Ei(r)Ej (r′) (6.2)

the kernelσij (r, r′; t) is deduced from (5.18). By either route we find, in the frequency
domain,

σ(r, r′;ω) = 60

[
δij δ(r − r′)−D ∂ri ∂r ′jP(r, r′;ω)

]
(6.3)

where60 is the bulk conductivity, andP(r, r′;ω) is the Fourier transform of the propagator,
given by (5.19).

This form for the non-local conductivity was originally given in reference [16] (and
in the DC limit in reference [15]). The argument in these earlier papers involves the
diagrammatic analysis of disorder-averaged perturbation theory, and in the case of [16] it
appeals to a sigma model formalism. We believe that our derivation is more direct, and
also more compelling. Our derivation considers the effect of the surface explicitly, whereas
it is not clear from the diagrammatic analysis that there are not additional contributions
which arise from integrating fields over the surface of the sample. Our derivation also
deals explicitly with the fact that the trajectories are discontinuous, and we show explicitly
how the correct evaluation is related to the Stratonovich definition of the integral over the
trajectory.

6.2. Self-consistent solution

The self-consistent electric field has to be chosen to satisfy (3.5). First we remark that
in the case of diffusive electron motion, the term containingε0 is negligible, and can be
dropped. Estimating the magnitude ofσ̂ by the bulk conductance60 = ne2D, and noting
that the bulk plasma frequency scale isω2

p ∼ Ne2/meε0, we see that this term is negligible
provided thatω � ωs, whereωs is the elastic scattering rate. This is consistent with the
assumption that the electron motion is diffusive.

We therefore wish to determine an electric field for which∇ · (σ̂E) = 0. Using (6.3)
this satisfies

∂ri

∫
dr′

[
δ(r − r′)Ei(r′)−D ∂ri ∂r ′jP(r, r′;ω)Ej (r′)

]
= 0. (6.4)

Using the diffusion equation we find

iω
[ ∫

dr′ P(r, r′;ω) ∂r ′j Ej (r′)−
∫

ds ′j P(r, r′;ω)Ej (r′)
]
= 0. (6.5)

This equation has a solution where∇·E = 0 everywhere, withE tangential to the bound-
ary. The classical solution for an isotropic local conductance satisfies these conditions.
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6.3. Calculation of the absorption coefficient

We can now use the solution of the form (3.7), (3.8), withφ = 0, and withψ tangential to
the boundary. Referring to (5.20) we observe that, after integrating by parts, the integrals
are seen to vanish because the fieldA is divergenceless and is tangential at the boundary.
It follows that the summation in (5.20) vanishes, and that the absorption coefficient is given
by the classical expression (5.1), at all relevant frequencies.

We conclude by describing a useful approach to calculating the fieldψ , satisfying
Poisson’s equation (3.9). The solution can be obtained from a Green’s functionG(r, r′)
satisfying∇2G = −δ(r − r′). A suitable Green’s function is

G(r, r′) =
∑
n

ξn(r)ξn(r
′)

k2
n

(6.6)

where theξn(r) and k2
n are eigenfunctions and eigenvalues of the Helmholtz equation,

[∇2 + k2
n]ξn = 0, solved with the Dirichlet boundary conditionξn(r) = 0. The fieldψ(r)

is then obtained by applying this Green’s function to the source term iωB0 appearing in
(3.9). In two dimensions, the absorption coefficient can then be written in terms of theξn
as follows:

α(ω) = 60

2E2
0

∫
dr

∣∣∇ψ∣∣2 = − 60

2E2
0

∫
dr ψ ∇2ψ∗ = iω

60B0

2E0)2

∫
dr ψ. (6.7)

Using the Green’s function (6.6) to obtainψ , we have

α(ω) = 60ω
2

2c2

∑
n

1

k2
n

∣∣∣∣ ∫ dr ξn(r)

∣∣∣∣2. (6.8)

This is a very general expression for the classical magnetic dipole absorption coefficient
in particles with diffusive electron motion, expressed in terms of solutions of the two-
dimensional Helmholtz equation. As it stands, equation (6.8) is valid for two-dimensional
particles.

We note that the eigenfunctionsξn(r) obey Dirichlet boundary conditions and that the
absorption coefficient for a given geometry can be significantly reduced by applying cuts
orthogonal to the boundary: the main contribution to the sum in (6.8) comes from the
ground state and the low-lying states and the corresponding eigenvalues are increased by
applying cuts. This behaviour is expected since such cuts inhibit the flow of eddy currents
which causes the absorption.

6.4. Some examples for simple geometries

In this section we summarize our results for specific geometries, namely discs, squares, and
spheres (the result for the latter is well known [1, 8], and is included to establish connections
with earlier work). For two-dimensional discs of radiusa, we haveψ = iωB0r

2/4. Using
(3.10) and (5.1) we obtain

α(ω) = π

16

60ω
2a4

c2
. (6.9)

This result is easily shown to be consistent with (6.8), using the fact that thekn are defined
by J0(kna) = 0 and that

∑
n k
−4
n = a4/32. For squares of side-lengtha, we obtain

α(ω) = 32

π6

60ω
2a4

c2

odd∑
m,n>0

1

m2n2

1

m2+ n2
. (6.10)
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The sum can be evaluated numerically and gives 0.528. . .. Finally, for spheres of radiusa,
equation (6.8) is to be modified as follows:

α(ω) = 60ω
2

2c2

∫ a

−a
dz

∑
n

1

k2
n

∣∣∣∣ ∫ dr ξn(r)

∣∣∣∣2 (6.11)

where the eigenvalues are defined byJ0(knr⊥) = 0 andr2
⊥ = a2− z2. We obtain

α(ω) = π

15

60ω
2a5

c2
. (6.12)

Equation (6.12) reproduces the well-known absorption coefficient for metallic spheres [1].
In [1], this result is compared to the absorption coefficient for electric dipole absorption,
which has a different size dependence,∼ a3. In two dimensions, on the other hand, the size
dependence is the same for magnetic and electric dipole absorption. The latter coefficient
was calculated in [13]:

αel(ω) = 34

9π

ε2
0a

4ω2

60
. (6.13)

7. Ballistic electron motion

7.1. General remarks

In the case where the electron motion is ballistic, the electric field must be determined by the
non-local conductivity, and equations (3.5) and (3.6) must be solved to determine the electric
field. Fortunately, in both the high- and low-frequency limits, there are considerations which
simplify the discussion.

In the low-frequency limit,ω � ωc, we showed in section 3 that only∇×E is relevant,
and that we can use any electric field for which the circulation is spatially uniform. It follows
from (2.3)–(2.5) that the absorption coefficient is proportional toω2 at low frequencies.

In the high-frequency limit, the conductivity tensor (4.10) acts over a rangeR ∼ vF/ω,
and the conductivity becomes effectively local, with value6(ω) = iNe2/meω. The non-
local self-consistency condition for the electric field then reduces to the same requirements
as for the diffusive case: the electric field is tangential to the boundary, and is derived from
a fieldψ which satisfies (3.9).

From (2.5), it is clear that the high-frequency behaviour is determined by discontinuities
in derivatives of the correlation function. The correlation function of the smooth perturbation
f (t) = ṙ · E for motion in a billiard has discontinuous derivatives due to the change of
direction when the particle collides with the boundary. In the neighbourhood of a collision
with the boundary att = 0, the perturbation takes the form

f (t) = (ṙ′ + ṙ′′) ·E[(ṙ′ + ṙ′′)t ]2(−t)+ (ṙ′ − ṙ′′) ·E[(ṙ′ − ṙ′′)t ]2(t) (7.1)

where ṙ′ and ṙ′′ are respectively tangential and normal components of the velocity at the
instant before the collision, and2(t) is the step function. Taylor expandingE(r) we find
(with repeated indices summed over)

f (t) ∼ ṙ ′iEi + ṙ ′′i Ei{2(−t)−2(t)} + (ṙ ′i ṙ ′j + ṙ ′′i ṙ ′′j ) ∂rj Ei t
+ (ṙ ′i ṙ ′′j + ṙ ′′i ṙ ′j ) ∂rj Ei t{2(−t)−2(t)}. (7.2)

For a general electric field,f (t) has discontinuities int of magnitude 2̇r ′′i Ei on collision
with the boundary, but for electric fields tangential to the boundary, the discontinuities are
in the first derivative, and are of magnitude 2(ṙ ′i ṙ

′′
j + ṙ ′′i ṙ ′j ) ∂rj Ei .
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If f (t) has discontinuities in itsnth derivative, the Fourier transform of its correlation
function decays asω−2(n+1) asω → ∞. The absorption coefficient is obtained from this
Fourier transform by multiplying by a factor which containsω2. In the case of a general
field we therefore expect the absorption coefficient to approach a constant forω � ωc,
whereas for a tangential field we expect thatα(ω) ∼ ω−2 for ω � ωc. We know that the
fieldE(r, ω) approaches the tangential form asω→∞, but we have no information about
how rapidly this limit is approached. We can only say that the absorption coefficient must
decrease forω � ωc, and that it is unlikely to decrease faster thanω−2.

7.2. An example: the square billiard

It is instructive to discuss an example: we consider the absorption coefficient for a square
billiard with ballistic electron motion, with two different, frequency-independent, choices
for the electric fieldE(r), both satisfying (3.7), (3.9). First we calculate the absorption
coefficient assuming that the field is tangential to the boundary, and then consider the
case where it is circularly symmetric (which corresponds to taking the angular momentum
operatorL̂z as the perturbation. The results will illustrate the application of (2.5), and
will verify two of the conclusions from the arguments above: we find that the absorption
coefficients agree in the low-frequency limit, and that at high frequencies the absorption
scales asω−2 for the tangential field, but asω0 for the radially symmetric field.

In terms of the perturbation

1H(r,p) = e

me
p ·A(r) (7.3)

the absorption coefficient is given by

α(ω) = ω2

2
g(EF)Re

∫ ∞
0

dt eiωt
〈
1H(rt ,pt ) 1H(r,p)

〉
. (7.4)

The perturbation (7.3) is determined by the choice of the vector potentialA(r). We will first
assume thatA(r) is tangential to the boundary of the particle. Accordingly we takeφ = 0
in equation (3.7). The fieldψ(x, y) in equation (3.8) is determined from equation (3.9)
which is most conveniently solved using the Green’s function (6.6). For a square of sidea

we obtain for the perturbation

1H(r,p) = e

me
B0a

2

(
2

π

)4[
px

odd∑
mn

nπ

a

sin(mπx/a) cos(nπy/a)

mn(m2+ n2)

+ py
odd∑
mn

mπ

a

cos(mπx/a) sin(nπy/a)

mn(m2+ n2)

]
. (7.5)

Since motion in the square is integrable, the autocorrelation function of the perturbation in
(7.4) is calculated as an average over tori:〈
1H(rt ,pt ) 1H(r,p)

〉
=
∫

d2θ

(2π)2
dµ(I) 1H(I,θ)1H(I,θ + ω(I)t) (7.6)

where dµ(I) = g(EF)
−1δ[EF − H(I)] averages over the tori.I andθ are the action and

angle variables characterizing the motion in the square;ω(I) are the respective frequencies.
Equation (7.6) is easily evaluated [22]. The result is of the form

α(ω) = 8

π8

mee
2ω2a5vF

c2h̄2 f (ω/ωc) (7.7)
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wheref (z) is an energy-independent scaling function andωc = vF/a. For large frequencies,
f (z) ∼ z−4 and henceα(ω) ∼ ω−2. For small frequencies, on the other hand, one obtains

α(ω) = 8

π8

mee
2ω2a5vF

c2h̄2

odd∑
m,n>0

1

m2n2

1

(m2+ n2)3/2
. (7.8)

As remarked in section 7.1, the absorption coefficient is proportional toω2 for small
frequencies.

In order to verify explicitly that the low-frequency absorption does not depend on the
boundary conditions for the electric field, as discussed in sections 3.3 and 7.1, the above
calculation can be repeated using a vector potential in the symmetric gauge:

A = B0

2
(−y, x,0). (7.9)

We note that this choice of the vector potential does not satisfy tangential boundary
conditions. The corresponding perturbation is

1H(r,p) = e

me
p ·A = eB0

2me
Lz. (7.10)

For small frequencies we find again the result (7.8), thus verifying explicitly that the
boundary conditions do not influence the low-frequency absorption. For high frequencies,
on the other hand, we findα(ω) ∼ ω0, as predicted in the previous section.
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